GJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets
نویسنده
چکیده مقاله:
Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dependence structure on the risk identification and the optimized portfolio selection, will be analyzed. The results show that the t-student copula function provides the best performance among other Copula functions. Also, empirical evidence suggests that the performance of the GJR-Copula-CVaR method is relatively more accurate and more flexible than other common methods of optimization.
منابع مشابه
CVaR Robust Mean - CVaR Portfolio Optimization
One of the most important problems faced by every investor is asset allocation. An investor during making investment decisions has to search for equilibrium between risk and returns. Risk and return are uncertain parameters in the suggested portfolio optimization models and should be estimated to solve theproblem. The estimation might lead to large error in the final decision. One of t...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Presenting a Model for Portfolio Risk Premium Assessment: Evidence from the Tehran Stock Exchange
This study aimed to present a model for portfolio risk premium assessment of companies listed in Tehran Stock Exchange. In order to achieve this purpose, monthly data of 150 companies listed in Tehran Stock Exchange during 2007-2017 was used. In this study, the predictive powers of FamaFrench three-factor model [11], Carhart four-factor model [1], Fama - French five-factor model [24], Brousseau...
متن کاملFragility of CVaR in portfolio optimization
We evaluate conditional value-at-risk (CVaR) as a risk measure in data-driven portfolio optimization. We show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems are unreliable due to estimation errors of CVaR and/or the mean, which are aggravated by optimization. This problem is exacerbated when the tail of the return distribution is made heavier. We conclude that CV...
متن کاملCVAR-Constrained Multi-Period Power Portfolio Optimization
We consider power portfolio optimization of real and contractual assets, including derivative instruments in a multi-period setting. A model is introduced that incorporates fixed transmission rights in a three-node unidirectional network in order to evaluate the significance of transmission constraints. We use data from the PJM, which is located in the eastern United States for model implementa...
متن کاملLong Memory in emerging markets: evidence from Chinese Stock Market
Chaoqun Ma a Hongquan Li b,*1 Lin Zou (a College of Business Administration, Hunan University, Changsha, P.R.China, 410082) (b School of Business, Hunan Normal University, Changsha, P.R.China, 410081) Abstract: The notion of long memory, or long-term dependence, has received considerable attention in empirical finance. This paper makes two main contributions. First, the paper aims to provide ev...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 22 شماره 4
صفحات 990- 1015
تاریخ انتشار 2018-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023